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The general study of random walks on a lattice is developed further with 
emphasis on continuous-time walks with an asymmetric bias. Continuous 
time walks are characterized by random pauses between jumps, with a 
common pausing time distribution ~(t). An analytic solution in the form 
of an inverse Laplace transform for P(l, t), the probability of a walker 
being at I at time t if it started at l0 at t = 0, is obtained in the presence of 
completely absorbing boundaries. Numerical results for P(l, t) are presented 
for characteristically different ~b(t), including one which leads to a non- 
Gaussian behavior for P(1, t) even for large t. Asymptotic results are obtained 
for the number of surviving walkers and the mean (1) showing the effect of 
the absorption at the boundary. 

KEY W O R D S :  Random walks; transport theory; stochastic processes; 
boundary value problems ; continuous-time walks. 

1. I N T R O D U C T I O N  

T h i s  p a p e r  is a c o n t i n u a t i o n  o f  t h e  d e v e l o p m e n t  o f  t h e  t h e o r y  o f  r a n d o m  

w a l k s  o n  la t t i ces ,  t h e  ea r l i e r  s t ages  o f  w h i c h  a re  g i v e n  in  Ref .  1-6.  I t  is 
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primarily concerned with random walks on lattices with an extensive number 
of traps, permanent and temporary. The investigation of this type of system 
was motivated by experiments on transient photoconductivity of amorphous 
semiconductors. ~7,8~ In such materials some localized states correspond to 
deep traps or hopping sites for electrons (holes) which, after being trapped 
for some time, finally escape from the trap only to be retrapped at another 
localized state or hop to another site. The time a carrier spends in a trapped 
state may be considerably longer than the time of flight from one site to the 
next. In the conductivity experiments the electric field which gives rise to the 
current creates a bias in the direction in which the carrier jumps after it 
escapes from the trap. Finally, those electrons (holes) which reach the edge 
of the sample are captured forever by positive (negative) charges. Hence the 
edge of the crystal acts as an absorbing barrier or a trap so deep that escape 
never occurs. The detailed application to the problems mentioned above will 
be developed elsewhere. 

In this section we review very briefly the ideas in the previous papers 
of the series which are relevant for the problem at hand. Section 2 is a 
general discussion of the effect of temporary traps, and Section 3 contains an 
exposition of the rate of disappearance of walkers into the absorbing barrier 
and the dynamics of a pulse of walkers which have been injected into the 
sample and which undergo a biased walk. 

The starting point of our general theory is that of walks on a network 
such that at regular time intevals (a) the walker must jump to a new point 
and (b) the transition probability for a jump from l' t o / ,  p(l, t'), is the same 
anytime a walker is at I'. Then if P,~(I) is the probability that a walker is at 
network point 1 after n steps, 

with 

P.+l(t) = Y~ p(t, z ')P.(r) (1) 
U 

y, p(t, z') = 1 (2) 

The generating function for the walks is defined as 

e(t, z) = p . ( 1 ) z  '~ (3) 

If  the initial distribution function of location of walkers is Po(I), then by 
multiplying Eq. (1) by z ~+1 and summing over n, one obtains I~i 

P(I, z) - -  z ~ p(l,  I ')P(I' ,  z) = Po(l) (4) 
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The P(l, z) can be expressed in terms of the Green's function G(l, z) which 
satisfies 

G(I, z) - -  z ~ p(/, l')G(l', z) = ~,o (5) 

for 

P(I, z) = ~ G ( I -  l', z)Po(l' ) (6)  
U 

Now suppose that steps do not occur at regular time intervals, but that 
there exists a probability density function ~b(t) such that after a walker 
arrives at any network point the probability that he will make his next step 
between time t and t § St is ~b(t) &. Let fi(I, t) be the probability of a walker 
being at t at time t. Then it can be shown (~) that the Laplace transform of 
/~(l, t), 

P*(/, u) i ~ = e -'~ fi(l, t) dt (7) 
~0  

has the form 

if*(/, u) = Q*(I, u) [1 - ~b*(u)l/u (8) 

where ~b*(u) is the Laplace transform of ~b(t), 

r = e -~* ~b(t) dt (9) 

and Q*(l, u) is directly related to the generating function (3) with 

Q*(l, u) ~ P[1, ~h*(u)] (10) 

with z in (3) set equal to ~b*(u). 
Once P*(l, u) is known its inverse Laplace transform can be found to 

yield P(l, t) just as one can obtain P,(l)  from the generating function (3) by 
finding the coefficient of z ~. These results are only valid when all network 
points have the same ~b(t); i.e., when the distribution of pausing times is 
independent of the network point. The theory can be extended to situations 
in which there are several classes of network points, each class having its own 
~h(t). This will be discussed elsewhere. 

A network in the form of a periodic lattice has a simple Green's function 
G(I, z) and the theory has a relatively simple form. Let us suppose that all 
lattice points are equivalent, as is the case in a square lattice or a simple cubic 
lattice. In this case 

P(/, /3 =-- P(/ -- /3 (I l) 
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depends only on the vector  distance / - -  l '. In  a k-dimensional  lattice with 
periodic b o u n d a r y  condit ions and with N1 lattice points  in the first direction, 
N2 in the second, etc., 

N 1 N 2 

G(I, z)  = ( N ; I N ;  ~ . . .)  ~ ~ ... exp 27ri(sa11N; ~ @ sz l2N;  1 + "")  (12) 
~i=z ~=1 1 - -  z A ( k  1 ,  ke  , k3 .... ) 

where ~(k) is the structure funct ion defined by c2.3) 

)t(k~ , k2 ,...) = ~ p( l )  exp - -  ik  . l with k j  ~ 2rrsj /Nj (13) 
t 

Note  tha t  

and 

p(l)  = 1 (14) 
l 

i5 = Z / ~ p ( O  = i(e:~/ekj)k=. (15) 

is the mean  displacement in t h e j t h  direction on each step, while 

ij 2 = ~ lj~p(l) = --(O2)~lOks2),~= o (16) 

is the second m o m e n t  of  the displacement  and the dispersion is 

(/~ - -  lj) 2 = 7j 2 - -  lj z (17) 

An explicit lattice model  which we will use frequently in the remainder  o f  
this paper  is 

p(0, l, 0) = p(0, - -1 ,  0) = p(0, 0, 1) = p(0, 0, - -1)  = q 
( i s )  

p(1, 0, 0) = 2~p; p ( - 1 ,  0, 0) = 2(1 - n)p 

with all other  p( la ,  12, I3) vanishing. This corresponds to nearest-neighbor  
hopp ing  on a simple cubic lattice with a bias for  hops in the + x  direction 
over  those in the - - x  direction. F r o m  Eq. (14) 

4q -+- 2p =- 1 (19) 

The  appropr ia te  fo rm for  the structure function h(k) is 

) t (k l ,  k2 ,  k3) = 2q(C2 + C3) + 2pC~ --  2(2~/ - -  1)piS~ (20) 

with 

Cj ~ cos k s and Ss = sin ks with k j  ~ 2rrsj /Nj (21) 
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sj being an integer in the range l, 2,..., N j .  As k -~  0 

A(ka, k2,  ks) ~-~ 1 - -  2pi(2~/ - -  1)k I --  qk2 "2 - -  qka 2 - - p k l  2 @ "'" (22) 

A n  alternative tradit ional way of  discussing continuous-t ime r andom 
walks on lattices is through a master  equation (e) which is obtained by letting 
the time interval between jumps as described th rough  Eq. (1) become smaller 
and smaller. I f  we let t = nT and consider p(l ,  l'; T) to be a function o f  T, 
then 

P,+,( l)  - -  Pt( l )  = • [p(I, l' ; T) - -  Sz,z'] P,( l ' )  (23) 
l '  

so that  as T --~ 0 

where 

dP~(l) /dt  = ~ P , ( I ' )A( I ,  I') (24) 
U 

A(1, l ') = ~mfp(1,  l ' ;  T) - -  ~,~,]/T (25) 

Then the discussion of  the lattice walk problem is based on solving the 
differential equation. 

In  order to be a bit more  explicit about  the limit process (25), let us 
consider several forms of  the probabili ty density function ~b(t) for  steps 
away f rom a lattice point.  First we choose 

r = )re -at (26) 

Then the probabil i ty that  a step to a new lattice point  is made in time r is 

j ~ ( t )  dt  = I - -  e -aT = AT + O(T z) (27) 
, 0 

while the probabil i ty that  the walker remains at his lattice point  for a time T is 

Hence 

I f l  ~ l', 

e -ar = 1 - - A T + O ( T  2) (28) 

A(l ,  l) = lim T-111 --  AT @ O(T ~) - -  1] = - -1  
~-->0 

(29) 

p(1, l'; T) = p(~, z') {AT + O(T~)} (30) 

where p(t ,  l ')  is the probabil i ty tha t  if a step is made f rom l', the walker ends 
at 1. Then, if I =# l', 

A(/ ,  r )  = Ap(/, / ')  (31) 
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Hence (24) has the form 

dP~(1)/dt ~ - - A P t ( l )  + )t ~ p( l ,  l ' )Pt ( l ' )  (32) 
~ "  

It has been shown by Bedeaux et  al. (9) that when ~b(t) has the exponential 
form (26), the solution of (32) is exactly the same as that obtained from 
taking the Laplace inverse of (7) when f f*(l ,  u) is found from the generating 
function P[l,  ~b*(u)]. For  other forms of ~b(t) this is not necessarily true. For  
example, if ~b(t) is not given by (26), but if all positive integral moments 

tz ,  ~ tn~b(t) dt, n = 0, 1, 2, 3,... (33) 

exist, and if the limit (25) exists, then for all times long compared with 

~, ~ sup(/z~/n!) 1/n (34) 

the solution of the master equation (24) is essentially the same as the inverse 
Laplace transform of P*(/, u) as defined by (8) and (10). 

There are some elementary forms of ~b(t) for which the limit (24) does 
not exist. Consider 

~b(t) = )t(rr)tt)-a/2 e - ~  (35) 

Then for small r 

so that 

fo ~ ~b(t) dt  = 2rX/2 - -  -~/tr3/2 -? "" 

A( l ,  l) ~- lira[(1 -- 2"r z:2 -- 2/~T~/2 + "") -- 11/~- 

= lim(-2 -z/2)  

and our required limit does not exist. In cases such as 

~b(t) = (2a/~-) (a 2 + t2) -~ (36) 

the moments /~n do not exist, so that from the theorem derived in Ref. 9 
there might not be any time regime in which the solution of (24) would 
approximate the solution to our problem as obtained from lattice generating 
functions. It was indeed for these cases in which a master equation might not 
be valid that our generating function technique was developed. Since there 
is some evidence that in transient photoconductivity experiments ~b(t) may 
have a long tail such that moments do not exist, we base our analysis of the 
next sections on the generating function technique. 
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2. R A N D O M  W A L K S  W I T H  A BIAS IN  O N E  D I R E C T I O N  

The general formula for the probability of a random walker going from 
the origin to a point l in time t is obtained by calculating the Laplace inverse 
of Eq. (7). If a walker is originally at the origin of a periodic lattice, the 
generating function P(l ,  z )  is exactly G(I, z)  of Eq. (12). Hence using the 
standard inversion formula, we find 

c+i~o 

/5(/, t) = (1/2rri) f (du/u)e~[1 - -  ~b*(u)]G(l, ~b*(u)) (37) 
c-Joe 

To proceed further we need an explicit form for ~b*(u). 
We consider several classes of pausing time distribution functions. 

The first is 

~b( t ) = c~( c~t )~7-1e-~ / F (  ~d) (3Sa) 

where it is easily seen that 

f0 = t ~ ( t )  dt (38b) 

Equation (38a) reduces to the exponential distribution when aN = 1. Since 
all moments of (38a) exist, the asymptotic form for P(l ,  t)  for large t could 
be found from a transport equation such as (24). The Laplace transform of 
~b(t) is 

~ * ( u )  = [ l  + (u/~)] - ~  (38c) 

which is to be inserted into (37) if P(I,  t)  is to be calculated. 
Since the most interesting applications of (37) will be for cases in which 

higher moments of ~b(t) do not exist and therefore for which the transport 
equation (24) is not appropriate, we note two examples of such a distribution. 
The first is 

~bl(t ) = a(Trt)-l/2 - -  a2[exp(ta2)] Er fc(a?/2)  

(~rZ/2at~/2) -1 as t--- oo (39a) 

The Laplace transform of ~b~(t) is 

~bl*(u ) = [1 + (u~/2/a)] -~ ~ 1 --  (ul/2/a) + "'" (39b) 

The second is 

with 

~b2(t ) = 4a2[exp(ta2)]i 2 Erfc(at l /2)  

(~v~/2at3/2)-i as t -~ oe 

~ 2 * ( u )  - [1 + ( u l / 2 / a ) ]  - 2  ~ 1 - ( 2 u l / ~ / a )  + " '  

(40a) 

(40b) 
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The quantity i 2 Erfc z is the second repeated integral of the complementary 
error function of which the nth is defined by 

i ~ Erfc z = (2/7r1/21~!) (t -- z) ~ (exp - - t  2) dt (41) 

Both forms (39a) and (40a) diminish as t -8/2 for large t rather than ex- 
ponentially. Forms (39) and (40) differ qualitatively for small t since (39a) 
diverges as t-z/2 as t--+ 0, while (40a) approaches a constant value in that 
limit. Since the Laplace transforms of the functions (41) are elementary, 
they are useful examples. (a~ 

An alternative form for P(l, t) which can be used instead of (37) is the 
finite Fourier representation: 

N1 N2 Ua 
P(l, t) = (1/N~N2N3) ~ ~ ~ y(k~, k2, k3 ; t) exp(i/, k) (42) 

81=I 82=1 83--1 

where 

kj =-- 27rsdN j (43) 

In the limit as N1, N2, and N3 --+ 0% P(l, t) becomes 

/S(l, t) = (27r) -a f f ; 7 ( k ,  t) exp ( i l . k )  d3k (42a) 

If  (48) is substituted into (37) and the result compared with (42), it is clear that 

y(k, t ) =  (1/2rri)fc~+i~ (du /u )e ' t [1 -  ~b*(u)][1- A(k)q~*(u)] -1 (44a) 

where A(k) is the structure function defined by (13). 
The Fourier component 7(0, 0, 0, t) is clearly equal to one, since fl(0) = 1 

and, with (Sr the inverse Laplace transform of the function f ,  

~-z[1/u] = 1 = 7(0, t) (44b) 

Various moments of P(l, t) are easily obtained from 7(k, t) .  Since 

7(k, t) = ~ P(l, t) exp -- il" k (45) 

we have 

i[aT(k, t)/akj]k=o = <lj) (46) 

--[a2y(k, t)/akj akj,]k=0 = (lfl~,), etc. (47) 
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We now consider the case in which at each step there is a bias for  a step 
to the right in preference to one to the left. Equal  weight is given to steps in 
to steps in the •  and ~ z  directions. As in Eqs. (11) and (13), we define 
p(1)  ~ p ( l l ,  12, l.~) to be the probabi l i ty  of  a displacement  vector  l each 
t ime a step is taken.  In  the case of  interest 

P ( h ,  12 ,13)  = p ( l l ,  - -  12, [3) = p ( l a ,  12, - -  13) = p ( l l ,  - -  12, - -  la) (48) 

Hence 

Z 1 2 p ( l l ,  1.2,13) = ~ 1 3 p ( l t ,  12,/3) = 0 (49) 

We also define ~1,  ~ ,  and ix2': 

( l l  2} = ~z ,  (122} = (la 2} - -  t~2' (50a) 

<h) = Y, @( l l ,  12, l~) = m (50b) 

then, if (/~lj} =- 0 for  i r j ,  

1(k) = 1 - -  i t ~ l k  1 - -  �89 "2 - -  1 , ~  2 . . . .  .v/z~ t,~e + ka 2) ~- as k -+ 0 (51) 

We now consider the explicit calculation of  the characteristic funct ion 
~(k, t). 

We can use (44a) and (44b) to rewrite y(k, t) as 

1 --  A(k) f~+~ d u  e ~t 
7 ( k ,  t )  l 2~ri .~_g~ ~ -  [~b*(u)1-1 - ) (k)  (52) 

In general one will not  be able to carry  out  the integrat ion in closed form. 
However ,  we have chosen our  examples  of  r Eqs. (38a), (39a), and (40a), 
so tha t  the integrat ion can be performed.  

Let  

z{/,(~)} _-- ~ j~_~ s{h(~) - ;~(k)} (53) 

Then,  if we use the fo rm (38c) for  r  and define 

we have 

and 

.r ~ ~ t ,  ~ =-- ~ i ,  s ~ u / ~  (54a) 

h ( s )  = (1 § s) ~ (54b) 

1 f c+i~ e s7 ds 
I{(1 + s )  ~ } =  ~ ~-i~ s{(1 + s ) ' - -  A(k)} (55) 
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F r o m  Laplace t rans form tables one finds e lementary forms  when -~ = �89 1, 2, 
as well as for  certain other  values of  e. The  respective values for  y(k, t) are 

~= = 2: 7(k, t) = e-~{cosh[r()t(k))Z/2] 

+ [)t(k)]-*/2 sinh [r(;~(k))*/q} (56) 

-~ = 1: 7(k, t) = exp - -  r{1 - -  )~(k)} (57) 

e = �89 y(k, t) = [1 - -  A(k)] -* (1 - -  err  r~/~ -t- )t(k) 

• exp{--[1 - -  )t2(k)]r} Erfc[- - ,~(k)r l /q)  (58) 

With  the choice (39a) of  ~b(t) and the t rans form (39b) one finds after 

s ~ u/a 2, r = ta n (59a) 

h(s) = 1 + sl/~ (59b) 

that  

7(k, t) = exp{[1 - -  ;~(k)]2r} Erfc{[1 - -  A(k)]rl/2} 

Similarly with the choice (40a) of  ~b(t), 

y(k, t) = �89 + )tl/2(k)] exp{r[1 - -  A1/2(k)l 2} 

• Erfc{[1 - -  )t*/2(k)]ra/2} 

--�89 - -  hl/~(k)] exp{r[1 + )tl/=(k)] 2} 

• Erfc{[1 ,-/az/2(k)lr~/2} 

(60) 

(61) 

One fo rm for  ~b(t) and h(k) for  which an explicit closed expression can be 
derived for  P(l, t) is tha t  with �9 = 1 in Eq. (38a), so that  

~b(t) : o~e -~t and ~b*(u) = [1 -+-(u/c~)] (62) 

and with the choice (20) for  )t(k). Then,  f rom (57) and (42a) 

P(I, t) = (2~r) -a .if0 exp{ik" 1 - -  r[1 - -  A(k)]} dak (63) 

When  the fo rm for  ;~(k) is substi tuted into this expression the three k integrals 
separate  and can be evaluated individually using the following Bessel funct ion 
formula:  

l a + i b  ~' l ( a2 q- b~)Z/2~ i~([a 2 q_ b2]l/z) : ~ -~ eik~ e a cos ~+0 smk dk  (64) 
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In  the k2 and kz integrals of  (63) b = 0 and a ~ 2qr,  while in the k, 
integral a = 2pr  and b = --2p(2~1 - -  1)it. Hence 

if(l, t) = [(1 - -  ~)/~71z~/2 e_~ l~,(2q~t) 

• I~(2qc~t) Iq(4p~t[~7(t - -  7/)]~/2) (65) 

The one-dimensional  analog of  this result was discussed by Montrol l  m) 
m a n y  years ago. When  r is very large the main  contr ibut ion to the integral (63) 
comes f rom small values of  k and (63) is approx imated  by 

/5(1, t) ~-~ (2rr) -a fffexp{i[k. I +  2rp(1 - -  2rl)ka]} 
- - r r  

• e xp{ - - r [qka  2 ~- qk22 + pk~ 2 + O(k3)]} d~k (66) 

I f  we let x~- = rl/2k~ and let r ---* 0% the term of  order r k l  3 become xlr-1/2,  
which can be neglected. Then 

09  

if(l,  t)  ~ (2rr)-Zr -a/2 fff exp(i -i/"[x . l -c pr(1 - -  2~7)xz] } 

X exp(--qx~ 2) exp(--qx32) exp( - -px l  2) dax 

(4~o~t)-~/2 (pqg-1/2  

• exp --{[(/22 q- lz~)/4o~qt] + [1~ § p~t(1 - -  2~7)]~/4~tp} (67) 

This is a three-dimensional  Gauss  distr ibution whose peak  travels in the x 
direction with a velocity 

dl/dt  = 2p~(2~ 7 - -  1) (68) 

The asymptot ic  Gauss  distr ibution is also observed for  other  members  
of  the class of  ~(t)  given by (38a) and in fact for  other  ~( t) ' s  for  which all 
momen t s  

;j Ix. = tn~b( t ) dt 

exist (and indeed even for  those for  which only the first two momen t s  exist))  
The central limit theorem for  the distr ibution of  a sum of  r a n d o m  

variables states that  if the first three momen t s  of  each of  the r a n d o m  variables 
is finite, then the probabi l i ty  distribution o f  the sum becomes Gauss ian  as 
the number  of  variables becomes large. (13,~4) Actual ly the necessary and 
sufficient condit ion for  this result is somewhat  weaker  than  the existence 

3 ShlesingerU~ relates the asymptotic behavior of r to P(/, t). 
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of  third moments.  (13) The theorem also applies to the sum of r andom three- 
component  space vectors, u3) Since the final position of  our walker after time 
t is a vector sum of  the individual step vectors, we see that  as t (and therefore 
the number  of  individual steps) becomes large the central limit theorem 
implies that  if(I, t) becomes Gaussian. This Gaussian distribution function 
is completely specified when the first and second moments  of  P(1, t) become 
known. The conditions that  P(l, t) becomes Gaussian for large t are satisfied 
when the pausing time distribution r  has the form (38a) but  are not  for  the 
forms (39a) and (40a). 

When /S(l, t) is Gaussian and A(k) is given by (20) the center of the 
moving Gaussian packet  is at 12 = la = 0 and 

(/~} = i[3y(k, t)/3kl]k=o = i[3y/~]a=~ [3,~/3k~]k_0 (69a) 

= 7~[37/~]a=1 (69b) 

where 7x is given by (50b); it has the value 2p(2~ --  1) in the nearest-neighbor 
jump case for  2,(k) given by (20). When we successively let y(k, t) be given by 
(56), (57), and (58) we find as t becomes large 

1 �89 = �89 e = 2 (ey/eA)a= ~ = 7 = ~t = tfi, ~ = 1 (70) 
2r  = 2c~t -~ = �89 

General ly the velocity of  propagat ion of  the Gaussian packet  which results 
f rom r of  form similar to (38a) is 

d(ll)/dt = 7a/~ (71) 

the ratio of  the mean distance per step to the mean time between steps, a 
result which is generally valid when the Gaussian distribution develops 
after a long time. 

The dispersion is given by 

cr 2 = (I12> --  (11> = (72a) 

F rom  (47) 

( ll 2} = --( 327/ 3k12)~=o (72b) 

But 

~2y/3klZ = (ey/eA)a=l (OzA/ek2)k=o q- (e~/ek)~=0 (~2y/eA2)a=l (73) 

Hence, f rom (46), (72a), 72b), and (73) 

.12 = { ( e r / e ~ ) ( a 2 a / e k 2 )  + (e~/ek)~ [(e~r/aa~) - (er /aa)q}~=o 
(74) 

= t ? ( e r / e a ) ~ = l  + l?[(e~r/eA~) - (e~,/ea)q~=~ 
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The dispersions for  the cases -~ = 2, e = 1, and ~ �89 are, respectively, 
as t--~ ~ 

0-z z = ( 1 1 2 - - i z 2 ) ( t / l )  if e = 2 (75a) 

0-1 ~ = l l~( t / i )  if  e = 1 (75b) 

o-12 ~ /12(/'/t) if r = �89 (75C) 

Since in con t inuum diffusion theory 

cr 2 = 4 D t  (76) 

not  all cases have the same diffusion constant.  
The  more  interesting examples of  ~b(t) are those which do not  lead to the 

t radi t ional  Gauss ian  packets  which with increasing t ime p ropaga te  with a 
constant  velocity and have a dispersion propor t iona l  to t ~/2. Let us first 
consider the fo rm (39a) for  ~b(t). Then f rom (46) and (60) we find that  

( l l )  = 2a l l ( t i e r )  ~/2 (77) 

so that  

d ( l l ) / d t  = a71( tTr) - l /2- -~  0 as t--~ oe (78) 

Also, f rom (47) and (56) 

O"12 - - -  2a'~7[ ~ t{1 - -  (2/zr)} -b 2al12(t/zr)  1/~ (79a) 

2a~7~ 2 t{1 - -  (2/~r)} as t - +  oo (79b) 

We see then that  the dispersion at t ime t, c~ ~ a-l l (2t) l /2,  is of  the same order as 
the distance of  travel o f  the mean  of  the p ropaga t ing  packet .  Since the 
velocity becomes so small as t becomes large, we hardly have a p ropaga t ing  
packet  at all, but  merely  one tha t  is slowly spreading. This is to be expected 
because ~b(t) is so b road  tha t  a walker  has a good  chance of  being hung up 
for  a long t ime at some traps.  In a packet  o f  m a n y  walkers those t rapped for  
long times become stragglers and are responsible for  the spreading of  the 
packet .  

Similar results are observed for  ~b(t) of  the fo rm (40a). In  that  case 

( l z )  ~ �89 1/2 - -  �89 -k  �89 exp(4a2t) E r f c ( 2 a P / ~ ) ]  (80) 

with 

d ( l l F / d t  = a2-1 exp(4a2t) Erfc(2at 1/2) ~ �89 1/2 (81) 

and 

0-12 = 1 1 2 ( l l ) / 7 1  - ~ - ( / 1 ) i l  - ( / 1 )  2 

-+- ta~-ll~[rc -1/2 + exp(4a2t) E r f c ( 2 a t l / 2 ) ]  --~ a2i2t(1 - -  rr-1/2)r-1/ '2 (82) 
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I f  we are concerned with only the x component  of  the position of our 
walkers, then we can sum over the y and z components of the various lattice 
points, l 2 and la, in Eq. (42): 

N 

P(11, t) = ~ P(l~, l~, l. ; t) 
~2,13=1 

N 1 

= (1/Na) 
8=1 

y(27rs/N1,  O, O) exp(2rris l l /NO (83) 

The subscript 1 on some of our variables can now be dropped without 
incurring confusion. In the numerical work to be reviewed in the remainder 
of  this section we restrict ourselves to the special case in which steps are 
taken only to nearest-neighboring points as prescribed by (18) and (19). 
The form for A(k) which is required in (44a) is found from (20) by setting 
k2 = k~ = O: 

with 

A(k, 0, 0) = 4q + 2pC - -  2p(2~/-- 1) iS 

= 1 - -  2p{1 - -  C-+- (2~/-- 1) iS} 
(84) 

k = 2rrs/N, C =~ cos k, S ~- sin k (85) 

We have calculated P(1, t)  from (83) for the following selection of forms 
of ~b(t): the exponential form (38b), the forms (39a) and (39b) with no 
finite positive integer moments, and the form 

~b4( t ) = 96a2[exp( taZ)i 4 Er fc(a t t  /~) (86) 

which has a finite first moment  but no finite higher integer moments. A 
discussion of repeated complementary error function distributions is given 
in Appendix A. Examples are exhibited with the first j moments finite and all 
higher moments infinite f o r j  = 1, 2, 3,.... 

The finite Fourier series summations required in (83) have been 
performed with the Cooley-Tukey (15) algorithm, which is especially effective 
when N is a power of  2. Our calculations were made with N = 28 = 256 and 
29 = 512. The first case considered was the exponential ~b(t), since in that 
case the closed-form expression for the limit as N - +  o% 

/~(1, t) = [(1 - -  rl)/'q]*/2 e-2~lz(4p~t[~7(1 - -  7~)] 1/2) (87) 

was available for checking the accuracy of programs for computation based 
on (83). 
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Fig. I. Plot of  the propagator  or probability distribution P ( I  - -  lo ,  t )  vs. l for a 
random walk based on ~b(t) = c~ exp -- c~t for a range of t. t = (2n + 1)t,./10, 
n = 0, i, 2, 3, where t~ is the "transit  time," [(t,.) = N .  The plot is scaled by 
the peak value of  P(l  --  lo, t) at the earliest time. N = 256. The velocity of the 
peak is a constant and the dispersion proport ional  to t z / t  The bias factor ~ of  
the walk is (a) "q = 0.9, (b) ~ = 0.6. 

We have plotted P(I, t) [as determined from (83)] as a function of I for 
various values of t in Fig. 1. The values of ~ chosen in Fig. l(a) is 0.9 while 
that in Fig. l(b) is 0.6. The pulse is propagated to the right with the velocity 
given by (71). The dispersion is given by (75c); since 

7 = 2p(2~? -- 1) and 12 = 2p (88) 

dl/dt = 2p(2~ 7 -- 1)~ and ~2 = 2pat (89) 

The data used to plot the curves which correspond to the first four time 
periods shown in Fig. 1 agree with the exact results obtained from (87) to at 
least four significant figures. At the time at which the distribution is re- 
presented by curve 4 in Fig. lb the effect of the periodic boundary condition 
becomes apparent since a significant probability has built up for a walker to 
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Plot o f  the propagator or probability distribution P ( 1  - -  I o , t )  vs. 
l for a r andom walk based on ~(t) = 4 a ~ [ e x p ( t a ~ ) ]  i 2 E r f c ( a t  z/2) for a range 
of  t z/2. t ~/2 = n t l / 2 / 2 0 ,  n - -  1, 2, 3, 4, 5, where tr is the "transi t  t ime," 
l(t~) = N .  The plot is scaled by the peak value of  P ( I  - -  l o ,  t )  at the earliest 
time. N = 256. The velocity of  the mean value decreases as t -1/~ and the 
dispersion is proport ional  to 11/2. The bias factor ~7 of  the walk is (a) ~7 = 0.9, 
(b) ~ = 0.6. 

be at a point represented by small integers. 4 It is to be emphasized in the 
Gaussian case since the distance reached by a pulse by the time t is propor- 
tional to t while the dispersion is only of order t 1/2, the pulse propagates 
as a packet and the probability of a walker being left at the starting point for 
a long time is neglible. 

The data plotted in Fig. 2 are derived from walks in which the pausing 
time distribution at each point is of the form ~b2(t ) given by Eq. (40a): 

~b~( t ) = 4a~[exp( taZ) ]i ~ Erfc(  atZ /2) 

4 The analytic expressions for ( l j )  in (70), (77), and (80) do not  exhibit  effects o f  the 
periodic behavoir  of/5(l, t)  (for finite N).  This l imitation can be traced to the step where 
we differentiate with respect to k, i.e., we assume k to be a cont inuous variable which 
implies N--~ oo. Therefore the derivation is valid for the packet before it encounters  
the  boundary  at  finite N (see the end of  Sec. 3). 
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Fig. 3. Plot of the propagator or ~, probability distribution P ( l -  lo, t) vs. 
l for a random walk based on ~b(t) = 4! 4a~[exp(ta2)] i x Erfc(at 1/2) for a range of 

t. t -- (2.75n -- 1.75)4/40, n = 1, 2, 3, 4, 5, where 4 is the "transit time," 
(4) = N. The plot is scaled by the peak value of t5(1 -- 10, t) at the earliest 
time. N = 256. The velocity of the peak is constant and the dispersion varies 
as t. The bias factor ~ of the walk is (a) ~7 = 0.9, (b) -q = 0.6. 

The sharp drops  to the left o f  the ini t ial  pos i t ion  10 in Fig. 2 are re la ted to  
the bias of  the walk.  However ,  the a symmet ry  of  the spreading  d is t r ibu t ion  
funct ion is ac tual ly  less than  the Gauss ian  packets  in Fig. 1. F o r  comparable:  
t imes (the unit  o f  t ime is a lways the " t r ans i t "  t ime 4 ,  i.e., the  t ime at  which 
~l) ~ N)  the value of /~( l ,  t) for  I < l o in Fig. 2(a, b) is larger  than  in Fig. 
l (a ,  b), respectively, in  o ther  words,  the Gauss ian  packets  " m o v e  a w a y "  
f rom l 0 ; thus the p robab i l i t y  for  the walker  to be at  I < lo is very small ,  in 
con t ras t  to the anomalous ly  spreading/~(1,  t) in Fig. 2, which always s tays  

peaked  at  10. 
In  Fig. 3 the d is t r ibu t ion  funct ion is p lo t t ed  for  walks derived f r o m  

8zz/9/z-~ 
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5b~(t) in (86) and for  ~ = 0.9 and 0.6. The  propert ies  of  ~b~(t) are discussed in 
Appendix  B; in part icular ,  f rom (B.17), we have 

(11) ~ (a211/3){t 4- (16tx/~/3arc 1/~) + (8 /9 )[exp(9 ta  2) Er fc (3a t  ~/2) - -  1]} (90) 

i.e., for  large t the mean  posi t ion moves  linearly with t. However ,  we can 
observe in Fig. 3 tha t  a walk derived f rom ~b~(t) represents an interesting 
transi t ion between the si tuation shown in Fig. 2, where the waiting t ime 
distr ibution did not  have a mean,  and the Gauss ian  packets  in Fig. 1. In  
Fig. 3 the peak  moves  with the mean,  but  the value of  i f ( l ,  t )  a t /1  remains 
finite th roughou t  as in Fig. 2. A closeup of  the behavior  at I0 for  Fig. 3a is 
shown in Fig. 4. We can clearly see a residue of  the "s t ra ight  edge" character-  
istic of  the distributions in Fig. 2(a). The dispersion in Fig. 3 as a result o f  
this behavior  is more  complicated (eventual ly  cr --+ tz/2, t --+ oo). 

3. EFFECT O F  T R A P S  O N  L A T T I C E  W A L K S  a's't6) 

In  this section we apply ideas developed in Ref. 2 to r a n d o m  walks in 
the presence of  lines or  planes of  traps.  5 We consider a periodic lattice in n 

K. Lakatos-Lindenberg has also considered the effect of absorbing boundaries on ran- 
dom walks in Ref. 17. 
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dimensions (with n = 3 being the case of most interest) with periodic 
boundary conditions so that the lattice forms a ring in one dimension, a torus 
in two, etc. We assume that in the absence of traps the probability of a 
transition from lattice point l' to I depends only on the displacement l -- 1'. 
Finally we characterize the trapping points as 11 , /2 ,..., l~, members of a 
set Lz. 

If  the lattice point I is not a trap, then the probability of a walker being 
at l after n steps is 

Pn(I)  = ~ p ( l  - -  ) P~_~(t ) (9l) 
Z " ~ s  

The trapping points are omitted from the summation because transitions 
from a trapping point to l are forbidden by definition of a trap. It is con- 
venient to rewrite (91) as 

P,~(1) = Z p ( l  - -  l ' )Pn_l ( l ' )  - -  Z p ( l  - -  l~)e,~_z(I~) (92) 
l" l j  e~.~P 

Now let l be a trapping point, say, that located a t /~ .  Then, since a walker 
trapped at/k remains there forever, 

P~(l~) = Pn-l(lk) + Y~ p(t~ -- I') Pn-I(F) (93) 

= y .  p ( l ~  - z') P . _ 1 ( l ' )  
l '  

- y .  [p( l~  - fj) - ~ , ~ ]  P n _ ~ ( t 3  ( 9 4 )  
I j  e ~  

A single equation which is valid for all l, being equivalent to both (92) and 
(94), is 

P,~(1) : ~.  p ( I  - -  l ')  P~_~(l ')  - -  ~ [p(l  - -  5)  - -  3~.~,] e,_l(/j) (95) 
l " ~ j e,L p 

The generating function for our random walk, 

P(l ,  z )  = ~ P,~(l)z '~ (96) 
q2=O 

is the solution of a difference equation which can be constructed by multi- 
plying both sides of (95) by z" and summing from n = 1 to ~ .  Then 

P(l ,  z )  - -  z ~ p ( l  - -  l ')  P( l ' ,  z )  = F(I)  (97a) 
l" 

where 

F(Z)  =-- Co( t )  - z y~ [p ( t  - i~) - ~,~j]  e ( I ~ ,  z)  
15 e,.LP 

with Po(I)  being the distribution function of walker initial locations. 

(97b) 
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If a walker is initially at lo ,  then 

Po(l)  = a~,lo (98) 

Otherwise it can generally be expressed as 

Po(l) = ~PcSz,z' with ~ Pl = 1 (99) 

Then by superposition the generating function for this initial distribution can 
be obtained from the solution of (97) with initial conditions of the form 
of (98). 

Let G(l,  z )  be the Green's function solution of 

G(l, z )  - -  z ~,  p ( l  - -  l ' )  G(l ' ,  z) = 8t.0 (100) 
[, 

which is the equation for the generating function of a walk which starts at 
the origin of a lattice without traps. The solution of (97a) is then 

e ( l ,  z)  =: Z G(l  - -  l ' ,  z )F( l ' ) ,  (101) 
U 

so that when F(1) has the form (97b) and the initial distribution has the 
form (98) 

P q ,  z) - c ( / - / o ,  z) 

= - z  Z G(t  - -  r ,  z) y ,  [p(1' - it) - ~ ' , 0  e ( l~ ,  z) 

= z y~ G(l --  l j ,  z) e ( l j ,  z) 
1~ E,LP 

- -  z Z P(I~ , z )  Z G(I  - -  l ' ,  z )  p ( l '  - -  l~) (t02) 

The summation over l' on the right-hand side of this equation can be ex- 
pedited by introducing the definition of G(l,  z ) ,  Eq. (100): 

z ~ p ( I -  l") G(l",  z)  = G(I, z)  - -  ~,o (103) 

Clearly, since G(1, z)  is translation invariant, 

z ~ G( l  - -  l ' ,  z ) p ( l '  - -  lj) = z Z G(I  - -  1', z ) p [ ( l  - -  It) - -  (l - - / ' ) l  

Hence (102) becomes 

F(/, ~) --  a( l  - / o ,  ~) - y~ 
t j e~  

= z ~,  G(l" ,  z ) p [ ( l  - -  lj) - -  l"] 

[(1 - -  z )  G ( l  - -  lj , z )  - -  6~,zj] P(I~ , z )  

(104) 

(1o5) 
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When l is a normal nontrapping point 

P(l, z) = G ( l - -  lo , z)  - -  ( 1 - -  z) ~ G ( l - -  l j ,  z) P(l j  , z)  (106) 
I j e ~  

The values of P(I, z)  at trapping points which are required in the summation 
are obtained by successively letting l • h ,  l~ ..... h in (105) and solving the 
set of t linear equations for P ( l j ,  z )  with l~ e ~ :  

( l - - z )  E G(l~--I j ,z)  P(l~,z) = G(lk--Io,z)  (107) 

As a first example, let us consider the case of a single trap at h .  Then from 
(106) and (107), 

( 1  - z)o(0, z ) e ( h ,  z) = a ( h  - 10, z) (10Sa) 

P(l,  z)  = G(1 - -  lo , z)  - -  G(l  - -  h ,  z )G(h  - -  lo , z)/G(O, z)  if l =/= h (108b) 

This equation, which was first derived in Ref. 5, has a simple physical 
interpretation. The quantity 

F( h - -  lo, z)  =-- G(h  - -  lo, z)lG(O, z)  (109) 

is the generating function of all walks which start at Io and reach/1 for the 
first time at the nth step (n = 1,..., oo), while G(l - -  l o , z)  is the generating 
function which corresponds to the sum over all paths which start at 10 and 
end at/1 �9 Hence the difference on the right-hand side of (108b) represents the 
sum over all paths which never go through the trap at h �9 

The influence of a line of traps can be considered in a similar manner. 
We choose a two-dimensional square lattice with traps at (0, 1), (0, 2), 
(0, 3) ..... (0, N2) as a prototype for our calculation. On a torus of N1 • N2 
points a cut along this line would allow one to open the torus into the form of 
a cylinder. We write a typical lattice point as (I1, lz) and the generating 
function at that point as P ( l l ,  I2 ; z) .  Then (107) has the form [with lo =- 
([10, ~O)J 

(1 - - z )  y~ a(o, k - - j ;  z) P(O,j; z) = G(--h o, k -- 8o; z), 
5=1 

k •  1,2 ..... N2 (110) 

Since our line of traps forms a closed ring on our two-dimensional periodic 
lattice on a torus, this equation can be solved for P(0, j;  z) through the aid 
of finite Fourier series. Let us define gs(1, z)  and ps(/, z) by 

{ g~( l , z )  1 ~r~ t G ( l , k ; z ) l  e-2~i~7~/N~ ( l l l a )  
p q, z)t = .7_1 tPq, k; z) 
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Then by finite Fourier series inversion 

~Gq, k; z) 1 ~'~ tg~(l, ~) 
IP(l, k ; z ) l  = ~ ~1 ~ps(l, z)l e2"i~e/N~ (111b) 

In view of the Faltung form of the left-hand side of (110), we find 

(1 -- z)gs(O, z)ps(O, z) = g8(-- l l  ~ z) exp(--2zr/s/2~ (112) 

When (ll,/2) is a normal trapping point (106) has the following form: 

t ' ( /1 ,  l~, z) = Oql  - 11 ~ - t? ;  z) 
N~ 

--(1 -- z) ~ G(ll, l~ - - j ;  z)P(0,  j; z) (113) 
j=l 

If we Fourier-invert this expression, use the definition (111a), and apply the 
Faltung factorization and Eq, (112), we find 

P8(11, z) = {g~(ll - -  11 ~ z) - -  gs(I1, z)g~(--l l  ~ z)/g~(O, z)} 

• exp(--2rrisl~~ (114a) 

which upon application of ( l l lb )  yields for nontrapping points (11, /2) 

1 N~ 
P(ll , Is ; z) = ~ ~ {g8(ll --  /o, z) - -  gs(11, z) g8(--11 ~ z)/gs(O, z)} 

8=1 

• exp[2~ris(l~ --  12~ (114b) 

Equation (114a) is the prototype basic equation for extended lines and 
planes of traps in any number of dimensions. It is structurally similar to 
the one-trap equation (l18b). When the points (0, s2, s3) with ss = t, 2, 3 ..... 
Ns and s~ ~ 1, 2, 3,..., N~ are traps on a 3D simple cubic lattice the analog of 
(114a) is (with kj =-- 2zcsj/Nj) 

p s~a(la, z) = {g828a(ll - -  ll ~ z) - -  g8~8,(ll, z)gs~8~(--11 ~ z)/gs~83(O, z)} 

• exp -- i(kff~ -? k31a) (115) 

where, for a lattice function F(ll , ls , l~ ; z), 

N~ N 3 

L~8~(I, z) = ~ ~ r( l ,  1~, 13 ; z) exp -- i(k2l~ -5 k313) (116) 
~2=1 ~3~1 

and 

F(l; z) = (1/NsNa) ~ ~f~28~(l, z) exp i(ksl2 -k k~13) (117) 
81 8 2 
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The 3D analog of (114b), 

1 U 2 N~ 

P ( l l ,  l~, l a ; z) - -  N2N8 ~ ~ P~3(11'  z) exp i(k212 ~- /ca/z) (118) 
82=1 83=1 

then gives the probability generating function for walks in the presence of a 
plane of traps. 

If we are concerned only with the x component of a walker's position, 
we can sum over all values of/2 and 18 in (118) to obtain 

e( l l  , z)  = goo(ll - -  11 ~ z) - -  goo(ll , z)goo(--ll  ~ z)/goo(O, z)  (119) 

The quantities g,2~(I, z) are related to the Green's function of the unper- 
turbed lattice walk which, as was noted in Eq. (12), has the form 

G(ll 12, I~ ; z) -- 1 exp 2~ri[(Slll/NO + (s~12/N~) + (sala/Na)] 
' N1N2Na ~ 1 - -  zA(s l ,  s z ,  sa) 

*~=*~ (120) 

where A(sl, s2, sa) is the structure function which characterizes the unper- 
turbed walk. By comparing this expression with the 3D analog of ( l l lb) ,  
we note that 

G(ll , 12,18 ; z) = (1/N2N8) ~ g~s~(ll , z)  exp 2rri[(sJ2/N~) -k (sala/Na)] 
828g 

(121) 

where 

1 ~. exp 27ri(sJ/N1) 
g.~s~(1, z) - -  ~ ~ =1 1 - -  z)t(szs2sa) (t22) 

In particular the go.o(l, z)  is given by 

1 Nz exp27ri(szt l /N1) 
go.o(l, z) = ~ ~ 1  ~ ~- z-~(s~-:O,, O) (123) 

In the special case in which only jumps to nearest neighboring-points 
are permitted according to (18) we find from (20) 

)~(kl, 0, 0) = 4q -k 2pC~ -k 2i(1 -- 2~7)pS~ (124) 

which corresponds to the structure function for a 1D walk in which the 
walker has a probability 2p~/of going to the right at a given step, a probability 
of 2(1 -- ~/)p of going to the left, and a probability 4q of pausing and waiting 
until the next opportunity to take a step. This is to be expected because jumps 
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in the ~ y  or ~ z  directions (which have total probability 4q) do not affect 
the x component of the walk. 

When (123) and (124) are compared with the 1D analog of (102) it is 
clear that (119) becomes 

P(l~ , z)  = G(I~ - -  l~ ~ z) - -  G(l~ , z )G(- - l~  ~ z)/G(O, z)  (125) 

which is the same form as (108b) with a single trap at the origin when the 
structure function is the 1D walk described above. 

The quantity go.o(l, z )  =-- G(l, z) ,  which has the following form for the 
choice (124) for A(s, 0, 0): 

1 ~ e 2~rist/N 
go.o(l, z) = ~ ~=1 (1 -- 4qz)  - -  2pz[~le-2"i~/N + (1 -- ~))e+2"i~/N] (126) 

1 ,~N e2~rist/N 
(127) N(1 -- 4qz)  ~L'I 1 - -  Pe2"is/~ - -  Qe-2~i~/~ 

where 

Q = 2pz~?/(1 - 4qz) and P = 2pz(1 -- ~/)/(1 -- 4qz). (128) 

The sum in (127) is evaluated in Appendix C. It is found that 

g00q, z) = [2pz(1 - v ) ( ~  - ~1)] -1 [~1~(1 - ~ / ) - ~  - ~ ( 1  - ~ ) - ~ 1  (129) 

where 

~21 = (1/2P)[1 ~ (1 -- 4PQ)~/2] (130) 
5 1  ) 

The derivation of (129) is based on the assumption that / ~2 i > 1 > [ ~1 [. 
Also, if N > l > 0, 

goo(--l,  z)  = goo(N - -  l, z)  (131) 

A quantity which can be obtained directly from P(l,  z )  as defined by 
(125) is the probability that a walker survives for a time t. Clearly, if a 
walker has survived without being trapped, he must be at a typical non- 
trapping lattice point. Hence the probability of surviving after n steps is 

Sn =- ~ P,~(I) (132) 
l(EN 

Hence the generating function for S~ is 

s = Z s . z ~  = Z e ( l ,  z) 
n ~ N  

(133) 
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so tha t  in the presence of  our  abso rb ing  bar r ie r  (or p lane  of  t raps)  at  ll 0 

we have f rom the defini t ion (118) of  P(l, z) 

N - - 1  

s(~) = Z P(l,  z) 
l = l  

N - - 1  

= ~, [ G ( l -  l o , z) - -  G(l, z )G(- - Io ,  z)/G(O, z)] (134) 
/ = 1  

N o w  from (131), since goo(l, z) ~ G(l, z), 

iv 

G(l, z) = [2pz(1 - -  ~/)(a2 - -  al)] -~ {[~/(1 - -  ~1)] - -  [a~/(1 - -  c~2)l) 

[2pz(1 - -  ~7)(a2 - -  1)(1 - -  c~t)] -1 (135) 

Also,  

N lo--1 N 

F, a ( 1 - / o ,  z) = Y~ a ( t -  lo, z) + Z a ( t  - lo, z) 
t = l  ~=1 l = l  o 

/o--1 N 

= Z G ( N -  lo + l, z) + Z a ( l  - 10, z) 
/ = 1  l ~  o 

N 
y 
l = l  

G(I, z) = [2pz(1 --  n)("~ --  !)(1 --  ~1)] -~ (136) 

Since G(- - l  ~ z ) ~  G ( N -  lo, z) and  G(N, z)==-G(O, z), the s u m m a n d  in 
(134) vanishes when l ~ N. Hence no er ror  is commi t t ed  in extending  the 
summat ion  in (134) to include the 1 = N term. Hence f rom (134)-(136) 

and  

~ 2  = v/(1 - ~), 

we see tha t  

where 

~ -5 c~ 2 = (1 - -  4qz)/2pz(1 --  ~1) (137) 

S(z)  = (1 - -  z)-l{1 - -  [A(N --  lo) --  (~1c~2) N A(-- lo)] /A(N)}  (138a) 

A(j )  ~ o~1~ --  o~2J (138b) 

The mean  life o f  a walker  before  being t r ap pe d  can be ob ta ined  direct ly  
f rom S(z).  Since S,~ was defined to be the f rac t ion of  un t r apped  walkers  
surviving at  the beginning  o f  the nth  t ime interval ,  the f rac t ion  of  or ig inal  
walkers  t r apped  dur ing  the nth t ime interval  is 

T~ ~ Sn+l - -  Sn (139) 
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The generating funct ion for  this quant i ty  is 

T(z )  = ~,  z~Tn  : ~ (S,z+l - -  Sn) z  ~ = z-l(1 - -  z ) S ( z )  (140) 

The mean  life of  a walker  is then 

= - - ( a T / a z ) z = l  (141) 

The required coefficient is 

Since 

where 

we see tha t  

where 

Hence 

lira ~[(1 - -  z ) S ( z ) ] / ~ z  = - - ~  (142) 

az = [7/( 1 - -  ~/)](1%- e) and (~1 = 1 - -  e (143) 

E = [(1 - -  z)/2p(2~? - -  1)1%- O[(1 - -  z) 2] 

A( j )  = (1 - KJ) - ~j(1 + ~ )  + o ( ~ )  

(144) 

(145) 

K = ~7/(1 - -  ~/) (146) 

K N - ~ o  - - -  1 I" q 

(1 - -  z ) S ( z )  = , | ( N  - -  lo) - -  N [ + O(e  ~) ~N 1 L J 
(147) 

F r o m  (140),  (143),  and  (147) one finds 

K N - l o  - -  1 

= [2p(2r / - -  1)] -x [ ( N - - I o ) - - N  ~-~-- -1  ] (148) 

The first term, p ropor t iona l  to (N --  l), represents loss of  walkers by collision 
with the absorbing  barr ier  at  l = N, while the te rm propor t iona l  to NK-~0 
for  large N represents capture  at 1 -~ 0. 

Let  us assume tha t  l 0 is large so that  terms in the fract ion in (148) can 
be neglected. Then,  since 2p(2~/ - -  1) is the speed of  p ropaga t ion  of  a pulse 
of  walkers  in our  lattice and ~ represents the mean  life of  a walker  before 
being t rapped  by the bounda ry  at N, we see tha t  (148) implies the reasonable  
result that  the mean  life is the distance the pulse travels before being t rapped  
divided by the speed with which it approaches  the t rapping plane. 

This result could also have been derived f rom Eq. (lI .2a) in Ref. 4. 
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The mean first passage time for a random walker on a ring of N points 
periodically spaced to reach a point N -- l after starting from the origin is 

( n ( N  -- 1)) = N{G(0, 1) -- G ( N  --  l, 1)} (149) 

Here G(l) is the random walk Green's function for the lattice, 

1 ~ exp(27risl/N) 
G(l, z) = N ~ 1 - -  zA(2rrs/N) (150) 

S=I 

If the form (124) is used for )~(2rrs/N) and if the sum is given by (129) as 
derived in Appendix C, then (149) becomes 

@ ( N - - l ) )  = Nlim[2p(1 -- r / ) ( % -  %)]-1 ( 1 - -  (Xf -~ 1 0r 1 
z 1 - ~1 ~ 1 - -  ~ - U ]  ( 1 5 1 )  

When the forms (143), (144), and (146) are substituted into this equation 
and the limit is taken one obtains exactly Eq. (148). 

The above ideas can be extended to the case in which the waiting time 
between steps is the general function ~b(t). The generalization of (125) is, 
analogous to the connection between (37) and (12), 

e+im 
/5(/, t) = (1/2~ri) fc-i~ (du/u) e"t[1 - -  ~b*(u)] 

• [aq  - 1o, ~*(u)) - a(l ,  4 . * ( u ) ) a ( N -  lo, ~*(u))/a(O, ~*(.))] 
(152) 

where now the function P(I, t) is the probability of a walker being at l at time t 
in the presence of the absorbing boundary at I = N. The probability function 
in (37) will now be denoted by G(I, t), i.e., the unperturbed propagator. We 
further define the inverse transform of (109) [with z = ~*(u)] 

F(t, t) (1/2rri) f~+im = ~u e ~ a ( i ,  4~*(u))/a(o, ~*(u)) (153) 

where F(l, t) is the probability density for reaching l for the first time at time 
t [see, discussion in Section V in Ref. 4, especially Eq. (V.7)]. With (37) and 
(153) one can perform the inverse transform in (152) and obtain 

P(1, t) = G(1 - -  l o , t)  - -  fo dr F ( N  - -  lo, r) G(1, t - -  -c) (154) 

The interpretation of (154) is quite simple: The probability for a walker 
starting at lo at t = 0 to be found at I at time t, P(1, t), is equal to the unper- 
turbed propagator lo--+ l minus the contribution of all paths that have 
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crossed the boundary [the second term on the right-hand side of (154)]. All 
the paths that cross the boundary at l = N can be characterized by first 
grouping them according to the probability per unit time of reaching N 
from l0 for the first time at some earlier time % F(N --  10, ~-), and then 
propagating back to l with an arbitrary number of crossings through the 
boundary in the remaining time t --  ~-, G(l, t --  ~) = G ( - - [ N  - - / ] ,  t --  -r). 
For  the total of the above paths one sums over all times ~- up to the time of 
observation t. 

In Figs. 1-4 we have shown the results of a computation of the unper- 
turbed propagator  [designated P(l, t) in Section 2] for various ~b(t) and bias 
conditions. Thus to calculate P(1, t)  in (154) one must now determine F(l, ~-) 
and then perform the ~- integration. We will pursue this in another paper. 

As a final point, one can get some information about numerical effects of 
the boundary by examining the time dependence of the mean (1) of P(l, t) 
in (152), which is proportional to the transient current J ( t )  [i.e., J ( t ) o c  
d ( l ) /d t ]  in the experiments alluded to in the beginning of Section 1. 

For  the large-time behavior of P(l, t)  we examine the small-u behavior of 
the integrand in (152). Such asymptotic behavior can be discussed quite 
rigorously.r However, it is our purpose to simply examine how the boundary 
at l = N manifests itself in the expression (152). The small-u behavior in 
(152) is characterized by 

1 - -  ~*(u)  ~ cu" (155) 

where we have given examples in Section 2 of ~*(u) with c~ = 1/2 and 
c~ ---- 1 [in general if the first moment  of ~(t) exists, then one always obtains 

= 1, c = ~]. Analogous to (144), let us define 1 --  ~*(u) ----7ae. With the 
limit �9 0 it is apparent that only singular terms (i.e., terms containing 
inverse powers of  E) in the second set of brackets in (152) give rise to anything 
other than contributions to P(l, t)  falling off with increasing t. Therefore for 
a qualitative understanding of 

iV 

(1) ~ Z tP(t, t) (156) 
Z =I  

we investigate the singular structure of 

N 

L(z )  =-- ~ I{G(l - -  lo, z)  - -  G(I, z ) G ( N -  l o , z)/G(O, z)} (157) 
7,=1 

whereZnow z = 4~*(u). One can compute the sums in (157) and write 

G ( N  - -  l o , z)/G(O, z) = 1 - -  (1 - -  z )S(z )  (158) 
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with S(z)  defined in 138a, 

N N N N 
~, l G ( 1 -  lo, z) = Z lG(l, z)  + l o ~, G(1, z) - -  X • G(l, z)  
/=1 g= l  1~1 I=N lo+l 

= 7(z) + [1o/1 - -  z] - -  N[2pz(1 - -  ~7)(c~ - -  al)]-* 

[ [~ 0dl 0~1 N / ~ O  (xIN (0~2+'-~ 0~1) ] J x 
~Z 1 - -  cr 

where 

(159) 

N 
-l(z) ~ ~. 1G(l, z) = [2pz(1 - -  r/)(c~ 2 - -  cq)] -~ 

l=l  

N c q  N+z 
• ] 

~ y  (1 - ~ 0 ( 1  - ~ u )  - ( ~  ~ ~)~ (160) 

Recall ing (143), i.e., cq = 1 - -  E and o~ 2 K(1 + ~) for  ~ -+  0 (~: > 1), one 
observes two types of  singular terms in (157)-(160). They are p ropor t iona l  to 
(1 - - c ~ )  -~ and (1 --c~zW) -~, respectively. N o w  al though ~ >~ 1, the te rm 
~ N  could be very small: 

O~l N ~ e -N~, ~ ~ 1 (161) 

and for  Ne >~ 1, 0~1N --~ 0, Thus the singular structure of  L(z)  is determined 
by e - +  0; however,  even for  small  e one has two regions to consider:  (i) 
Ne > 1 and (ii) Nc < 1. Hence the presence of  a boundary  in (152) is 
manifested through the (1 - -  alN) -~ terms. In region (i) one can show 

N-~o ~ e -(N-~~ e -~~ (162) G ( N  --  lo, z)/G(O, z) ~ o~ 1 -[- OL21~ ~- K -lO 

The r ight-hand side of  (162) is much  less than  one if (ln K) -z < l o ~ N 
(which we assume) and one can approx imate  L(z )  by the expression in (159). 
Thus in region (i), <l) is essentially identical to that  calculated in Section 2 
for  var ious r In  region (ii) 

G ( N  --  1 o , z)/G(O, z ) - +  1 - -  e ( N  - -  lo - -  N~  -z~ (163) 

This is essentially the result obta ined in (147) with the assumpt ion  K~v>~ 1 
(e.g., for  ~: = 1.5 and N = 256, K u = 1.2 x 1045). Insert ing (163) in the 
r ight-hand side of  (157), we find a cancellat ion of  l(z) between the first and 
second terms. Fur ther ,  in the limit a lu--~ 1 there is a cancellation of  the 
second te rm in (159) with the E -1 te rm in the third term. Thus,  

L(z)  ~ E(N - -  I o --  N~: -~~ -l(z) -F const  (164) 
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Now, the limit of l(z) for ~fv__~ 1 is very interesting. The e -~ terms in (160) 
cancel and 

l(z) ,~ (1/71e)(N + 1)/2 (t65) 

One thus arrives at the final result that in region (ii) 

<l> --+ 0 (166) 

and since l = N and l = 0 are equivalent, + one simply has the mean position 
coinciding with the position of a totally absorbing boundary for t - +  ~ .  
The condition for the transition between region (i) and region (ii) can be 
expressed [using (155)] as 

1 ~-~ Ne = Ncu~/-ll - -~ (Nc/lOt r 

or t~ the "transit time" is 

f o r 0 < ~ < l  and 

for ~ * ( u ) ~  1 -- ~u. 

(167) 

t r ~'~ ( N r  1/~ (168) 

t+. ~'~ N~/7~ (169) 

If  one considers only the "free propagator" [i.e., the G(I --  lo, z) term 
in (157)] in region (ii), one determines 

(1) --+ (N -I- 1)/2 (170) 

where use has been made of the result in (165). The meaning of this limiting 
value for (I> for the free propagation is apparent if one considers 

N N 
(l> ~- Z lQ(l, t ) + ~  Z (l/N) = ( U - 5  1)/2 (171) 

l=l Z=I 

The fact that ~(1, t ) -+  1/N is a consequence of the periodic boundary 
condition, i.e., propagation around a "ring." Transport around the ring 
become stationary, d(1)/dt  --~ O, as t ~ or. We have determined the correct 
(t ~ or) limit in (171) as we did not differentiate with respect to k (see foot- 
note 4). The results for (l> in Section 2 are valid for N - +  0% i.e., before the 
packet encounters the boundary. 

A P P E N D I X  A. LAPLACE T R A N S F O R M  OF REPEATED 
INTEGRALS OF T H E  C O M P L I M E N T A R Y  
ERROR F U N C T I O N  

We shall consider the Laplace transform of the function 

fn(t)  - -  Cna2[exp(a~t)]i ~ Erfc(at 1/2) 

6 W e  have  used  the  periodic proper ty  o f  G(1, z) in (159). 

(A.1) 
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where i '~ Erfc(z) is the nth repeated integral o f  the compl imenta ry  error  
funct ion defined in (41) by 

V i n Erfc(z) = (2/Trl/~n !) (y - -  z) ~ e x p ( - - y  2) dy (A.2) 
~ z  

and C~ is a normal iz ing constant .  Insert ing (A.2) into (A.1) and changing 
the variable of  integration, we have 

;j f~( t )  = ( C ,  a22/Trl/~n [) ds s n exp( - - s  2 - -  2atZ/2s) (A.3) 

The Laplace t ransform 

f0 s e ( L ( t ) )  - F . (u )  =- dt e - u T . ( t )  

;o = (C,,a22/TrZ/2n t) dt e -ut ds s n exp( - - s  e - -  2atl/2s) (A.4) 
0 

can be calculated by interchanging the order  of  integrat ion in (A.4) to obtain 

fo f0 F,(u)  = (C~a22/rrl/2n !) ds sn(exp - - s  2) dt exp( - -u t  - -  2astl/~) 

= (Cna2/Trl/Zn !) u('~-l-)/~ 

• dx  e - ~  x n / 2 [ X  - 1 / 2  - -  771/2 a exp(a2x) Erfc(axl/2)] (A.5) 

where s2=~ ux. N o w  considering only even integers for  n and using the 
well known proper ty  a~ 

~ { x ' ~ f  (x)} = (--)~'~ dmg(u) /d ,  ~ (A.6) 

where 

we derive 

g(u) = &~ (A.7) 

F,~(u) -- C2m (_)m s~-(~/~ d"~ (2m)! ds ~ (sa/2 4- 1)-1 (A.8) 

where s =-- u/a 2. In  general the fo rm of  F2~(u ) can easily be seen to be 

Pm_/s l /2 )  
F ~ ( u )  = (sZ/2 4- 1) ~+z (A.9) 

where P,~-l(x)  is a po lynomia l  of  degree m --  1 and P r o _ l ( 0 )  = | .  Using an 
expansion of  (A.4) in powers  of  u ~/2, one can show 

C2,,/(2rn)! = 21"(1)/F(m --  {-) (A. 10) 
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The first five explicit expressions for F2~(u) are 

F~(u) = 1/(s ~/2 § 1) 2 

f4(u) = (3s ~/2 4- 1)/(s~/2 + 1) 3 

F6(u ) = (5s 4- 4sl/z + 1)/(s~/2 4- 1) ~ 

Fs(u) = [7s ~/2 + (47/5)s + 5s~/2 4- 1]/(s~/~ 4- 1) 5 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

F~o(U) = [%2 § (122/7)s~/2 + (102/7)s § 6s~/2 § 1]/(st~ ~ + 1) 6 (A.15) 

The rational functions F2m(u) have the fascinating proper ty  that  the derivatives 

izS~) _-- d'F~,(U)du, ~=0 (A. 16) 

only exist for  j < m. Now for distribution functions r  the 
/~(m) j are equal to the j t h  moment  of  r Thus the functions {r 
represent a particularly versatile set of  distributions. One can choose a 
~b(t) [from r with a finite number  of  moments  and one can vary this 
number  f rom zero to any arbitrary value. In the text we have derived the 
characteristic function for r  = f2(t). In the next appendix we shall derive 
y(k,  t) for  ~b(t) = f4( t ) .  

A P P E N D I X  B. C H A R A C T E R I S T I C  F U N C T I O N  y(k, t) 
FOR ~ ( t )  = f4(t) 

For 

f4(t) = 4! 4a2[exp(aZt)]? Erfc(atl/~) (B.I) 

[denoted r in (86)] the first moment  /z~ 4) exists and all higher moments  
are infinite. In this appendix we shall derive the characteristic function 
corresponding to r  =f~( t ) .  F rom (52) and (53) 

y(k, t) = 1 - -  [1 --  A(k)] I{h(s)} (B.2) 

1 f ~ + i ~  e ~ ds 
I{h(s)} = ~ ~-i~ s{h(s) --  ,~(k)} (B.3) 

with r ~ a2t and h(s) = [r -1. The Laplace t ransform off4(t)  is given 
in (A.12). Therefore  we must  compute  

1 r c+i~ e ~ ds 
I{h(s)} = ~ ~ _ ~  s{(s ~/2 + 1)3/(3s~/2 + 1) --  A(k)} 

1 (~+~ ds e~(3sl/2 + l) 
(B.4) 

2rri !~_~ s (s ~/2 + 1) 3 - -  3)t(k)(s ~/2 + 1) + 2;~(k) 
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We determine the roots z~ that satisfy the equation 

Zi  a - -  3,~Zi @ 2h = 0 

We have 

where 

For A(k)-+ 1 

Z 1 = S 1 AV S 2 

Z 2 = _ e - i ~ / 3 s 1  _ e i ~ / 3 s 2  

Z 3 ~ - - e - l e t ~ a s 2  __  e i~ /as1  

s~ I = [--{1 =F [1 -- A(k)]~/2}A(k)] ~/a 
S 2 , 
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(B.5) 

(B.6) 

(B.7) 

(B.S) 

(B.9) 

51{--+e>i~/a (B.10) 
$2, 

and z 1 --+ 1, zz-+ 1, za--+--2. To correctly obtain the limiting values of 
z~ for A(k) -+ 1, we choose the cut in the complex z-plane along the negative 
real axis (--~r < arg z ~< rr). The denominator in (B.5) is factored and the 
integrand is expanded into partial fractions, with the result 

a zi -- 2/3 {1 -- F([1 -- z,]zt/0} 
~ ( k ,  / ') = I - -  [ I  - -  h ( k ) ]  E [z i  2 _ A(k)](1 -- zi) 

i = l  (B.11) 

where F(z )  ~ (exp z ~) Erfc(z). The roots {&} satisfy the following: 

(B.12) 

(B.13) 

(B.14) 

z l + z z + z a  = 0  

ZlZ 2 - ~ z l z  3 ~ - z 2 z  3 = --3h(k) 

zlzzza = --2A(k) 

in addition to the defining equation (B.6). With the use of (B.6) and (B.13)- 
(B.15) and some algebraic manipulation we can simplify y(k, t) in Eq. (B.12) 
to the following: 

3 
7(k, t) = Z (z~ 2 + 2&)F([1 -- z,lrX/2)/6a(k) (B.15) 

i=1 

To calculate (ll),  we calculate ~7/~h and take the limit ~ -+  1, 

(B.16) ~Y a-~l-~i~ r 16r ~/2 8 

8 2 2 / 9 / 2 - 3  
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so that 

( l )  o c r  

in contrast to (77) and (80). 
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for large r (B.17) 

A P P E N D I X  C. E V A L U A T I O N  O F  T H E  S U M  I N  EGI. (127) 

1 ~ e 2~*~*/N 
S(1) ~ ~ -  1 - -  Pe  ~"ism - -  Qe -2'ram 

s = l  

we write 

(c.1) 

Hence 

since 

N ~1 i f  I = O , •  •  ~ 3 N , . . .  
N-1  ~ e2~i~s/z~= ~0 (C.7) ~=~ for other integral N 

S(l) = [ P ( o ~  2 - -  o~1)1-1 [(Xl~(1 - -  o~IN) - 1  - -  0(2/ (1  - -  oL2N) -11  ( C . 8 )  

Note also from (4) that if N > l > 0 

S ( - - l )  ~- S ( N -  l) = [P(% - -  ~)]-z [c~N-t(l -- %N)-X __ ~-e(1 -- %N)-1] 

(C.9) 

1 - -  P x  - -  Q x  -1 = - - ( P / x ) ( x  - -  ~l)(x  - -  %) with x ~ e2~is/u (C.2) 

where 

~ I  = (1/2P)[1 =k (I -- 4PQ)I/21 (C.3) 
o~ 1 

We will be concerned with the case in which [ %[ > 1 >~ I ~1 [- Then, since 
ix ]  = l ,  w h e n l > 0  

S(I) = - - ( N P )  -1 ~ e2'~i(~+x)m ( 1 1 ) (C.4) 
s = l  O~ I - -  O~ 2 -X - O~ I X - -  OL 2 

N 

= [ N P ( ~  --  ~)]-~ ~ e~"~+m/~ {x-~[l + (~,/x) + (~i/x) ~ § -"] 

+ ~'[1 + (x/%) + (x/~) 2 + --l} (c.5) 

2N [ N P ( %  - -  %)1-1 [%~(1 + %N + % -I- "") 

_? %~(~-N + ~-~N + ~aN + ...)1 (C.6) 
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